Standard Thickness Range

Metric (mm)	Imperial (inches)	Common Applications	Available Sheet Sizes
0.5	0.02	Gaskets, electrical insulation	300x300mm, 500x500mm, 1000x1000mm
1.0	0.04	Seals, liners, lab equipment	Custom sizes up to 2000x4000mm
1.5	0.06	Chemical-resistant barriers, bearings	600x600mm, 1200x1200mm
3.0	0. 12	High-stress mechanical parts, bushings	1000x2000mm, 1500x3000mm
3. 18	0. 125	Industrial gaskets, valve seats	500x1000mm, 1500x1500mm
5.0	0. 20	Heavy-duty machinery, hydraulic seals	2000x4000mm, custom cuts
10.0	0. 39	Structural components, tank linings	As per sample or request

Specialty Thickness & Notes

- Ultra-Thin PTFE Sheets (0.1–0.4mm): Used for flexible liners and adhesive tapes; typically sold in rolls.
- Custom Thickness (up to 50mm): Machined for niche industrial needs (e.g., aerospace, semiconductor).
- FDA-Compliant Sheets: Available in 1.5mm–5.0mm for food processing and medical applications.
- Dimensional Tolerance: ±0.1mm for sheets <3mm; ±0.2mm for sheets >3mm.

Key Considerations

- Temperature Resistance: -200°C to +260°C across all thicknesses.
- Chemical Compatibility: Inert to acids, bases, and solvents; ideal for corrosive environments.

•	Thickness vs. Load Capacity: Thicker sheets (>3mm) handle higher mechanical stress.